Linking Travel Demand Modeling with Micro-Simulation (Phase II)

Prepared for:
Regional Transportation Commission of Southern Nevada

Prepared by:

Dongmei Lin, Ph.D.
Zong Tian, Ph.D., P.E. (PI)
Center for Advanced Transportation Education and Research (CATER)
University of Nevada, Reno
Reno, NV 89557
Email: zongt@unr.edu
Tel: (775)784-1232

April 15, 2015
The preparation of this report has been financed in part through grant[s] from the Federal Highway Administration and Federal Transit Administration, U.S. Department of Transportation, under the Metropolitan Planning Program, Section 104(f) of Title 23, U.S. Code. The contents of this report do not necessarily reflect the official views or policy of the U.S. Department of Transportation.
Table of Contents

Abstract ... 1

Executive Summary .. 2

1. Introduction .. 5
 1.1 Problem Statement .. 5
 1.2 Background ... 6
 1.3 Project Objective .. 8

2. Modeling Methodologies ... 9
 2.1 Cross-Resolution Simulation Method ... 9
 2.2 Conversion Process .. 11
 2.2.1 DTA Model Development ... 11
 2.2.2 Subarea Extraction and Conversion .. 12
 2.2.3 Exporting Subarea into Synchro/SimTraffic .. 14

3. Data Structure ... 15
 3.1 Input Data .. 15
 3.1.1 Network input files .. 15
 3.1.2 Demand input files .. 17
 3.1.3 Optional files ... 19
 3.1.4 Scenario input files .. 19
 3.2 Output Data .. 20
 3.2.1 DTALite output files ... 21
 3.2.2 NEXTA output files .. 22
 3.3 Settings Files .. 23

4. Case Study ... 24
 4.1 Reno-Sparks network .. 24
 4.2 Las Vegas Network .. 25

5. User’s Manual ... 26
 Step 1: DTA Model Development ... 26
 1-1. Export Network and Demand from TransCAD ... 26
 1-2. Import Network into NeXTA ... 30
 1-3. Read Network and Demand Data into NeXTA ... 33
 1-4. Run Assignment with DTALite to Equilibrium ... 33
 Step 2: Subarea extraction and Conversion ... 34
 2-1. Cut a Subarea within the Larger Network ... 34
 2-2. Generate physical Zone Centroids on Road Network ... 35
 2-3. Modify Node properties .. 36
 2-4. Re-run DTALite for the Subarea ... 37
 2-5. Subarea Calibration (Optional step) .. 37
 Step 3: Export Subarea to Synchro ... 37
 3-1. Use QEM to Estimate Initial Signals ... 37
 3-2. Export to Universal Traffic Data Format (UTDF) files ... 38
3-3. Import UTDF files into Synchro... 39
3-4. Additional Adjustments in Synchro... 40
6. Summary and Conclusion... 41
7. References.. 43
List of Figures

Figure 2-1 Cross-Resolution Simulation Framework .. 10
Figure 3-1 Relationship among different demand files .. 18
Figure 4-1 Subarea Conversion for Reno-Sparks Network .. 24
Figure 4-2 Subarea Conversion for Las Vegas Network ... 25
Figure 5-1 Las Vegas Network Loaded in TransCAD .. 26
Figure 5-2 Export Layer Dialogue ... 27
Figure 5-3 Establishing Relationship between Nodes and Links 28
Figure 5-4 Export Demand Matrices from TransCAD ... 29
Figure 5-5 Beginning Section of input_GIS_settings.csv .. 31
Figure 5-6 NeXTA File Loading Status Window ... 32
Figure 5-7 Illustration of Imported Network in NeXTA .. 32
Figure 5-8 Model Selection for Running Traffic Assignment 34
Figure 5-9 Illustration of Subarea Boundary for the Sample Network 35
Figure 5-10 Perform Subarea Cut in NeXTA ... 35
Figure 5-11 Modify Node Properties in NeXTA .. 36
Figure 5-12 Run Quick Estimation Method (QEM) to Generate Initial Signals 38
Figure 5-13 Export Subarea to UTDF Format .. 38
Figure 5-14 Import the Subarea into Synchro .. 39
Figure 5-15 Illustration of imported network in Synchro .. 39
List of Tables

Table 2-1 Node Control Types in NeXTA ... 12
Table 3-1 Essential Network Input Files .. 15
Table 3-2 Input Demand Files .. 17
Table 3-3 Optional Input Files .. 19
Table 3-4 Input Files of Scenario.. 20
Table 3-5 DTALite Output Files .. 21
Table 3-6 NEXTA Output Files .. 22
Table 5-1 Configurations for Link Type ... 30
Table 5-2 Configurations for input_node_control_type.csv 31
Abstract

This research aims to develop a conversion method to extract a portion of a travel demand network in TransCAD for constructing a consistent subarea of interest, and then convert it into a microscopic simulation in Synchro/SimTraffic.

TransCAD in nature is a macroscopic travel demand modeling tool. Synchro/SimTraffic provides detailed microscopic traffic analysis. Dynamic Traffic Assignment models serve as a mesoscopic tool for traffic analysis, which lie between TransCAD and Synchro. To convert a TransCAD model into Synchro for micro-simulation, the conversion method we propose is to use NeXTA/DTALite software package as an intermediate tool to generate a dynamic trip assignment (DTA) model, which will produce a network profile consistent with TransCAD as well as detailed traffic flows ready for Synchro to import from.

Using this method, a DTA model is developed based on the network in TransCAD model. A subarea of interest is then defined in NeXTA. Three functions in NeXTA should be utilized before a subarea extraction: node properties modification, virtual centroids treatment, and vehicle path regeneration. Then the subarea can be extracted and exported as Synchro-compatible data sets including node, link, volumes and signal information. Synchro/SimTraffic simulation is created by importing these data sets and making necessary modifications.

The conversion method was tested for its functionality using the TransCAD model maintained by the Regional Transportation Commission of Southern Nevada (RTCSN). Major conclusions and some outstanding issues from the project are documented in this report. The report also includes a User’s Manual for the conversion process.
Executive Summary

The research project Linking Travel Demand Modeling with Micro-Simulation (Phase II) was conducted over a nine-month period from August 2014 to April 2015. The project covered the conversion from a TransCAD model to a subarea simulation in Synchro/SimTraffic for the Las Vegas metropolitan area.

Travel demand forecasting and traffic simulation are two important components of transportation studies. Travel demand forecasting models have typically been used for planning purposes for future transportation systems at a macroscopic level. Traffic simulation tools are often used to account for the movements of individual vehicles at a microscopic level. Traditionally, there has been a disconnection between the macroscopic and microscopic levels. Transportation planners who perform travel demand forecasts rarely get involved in the operational level, while traffic engineers who conduct operational analysis using forecasted traffic demands often do not know the underlying principles and constraints of travel demand models.

The desire to link travel demand models and traffic simulation models has been recognized by transportation agencies and professionals. With the advent of computing technologies, transportation agencies are increasingly adopting microscopic traffic simulation models for large-scale design projects to obtain more detailed operational analyses. One critical issue that transportation agencies often encounter is that constructing a microscopic simulation model from scratch still consumes a significant amount of resources. Phase II of this research, following Phase I of linking TransCAD models to VISSIM simulation, provides a conversion method to link TransCAD models to Synchro/SimTraffic simulation. This conversion method uses the Dynamic Traffic Assignment (DTA) tool to link the macroscopic and microscopic levels. NeXTA/DTALite is a DTA software package that can import network profiles and travel demand data from TransCAD, generate vehicle paths that are consistent with travel demand, extract subarea and converts it to Synchro to initiate the simulation.

Typically three sets of data are required for micro-simulation, including roadway network, traffic demand and traffic control information. TransCAD contains a majority of the network and demand data needed for constructing a Synchro/SimTraffic model, except for the detailed lane configurations at intersections. NeXTA/DTALite can automatically transfer network profile, traffic volumes, and basic traffic control data from TransCAD to Synchro. The conversion initiates a subarea model in Synchro. Additional data needed for Synchro/SimTraffic simulation to reflect realistic traffic operation can be coded or generated in Synchro.

Methodology

A cross-resolution simulation method using NeXTA/DTALite as an intermediate tool was
adopted. This method develops a DTA model that ensures consistency between TransCAD traffic demand and Synchro vehicle flow, and allows users to easily define a subarea in the DTA model and convert it to Synchro.

The conversions are carried out in three steps:

1. Develop a DTA model by importing network data and OD matrices that were exported from TransCAD, and then performing dynamic traffic assignment for the entire network.

2. Extract a subarea, and convert the subarea to Synchro-compatible data formats. The key features in the conversion are node properties modification, virtual centroids treatment, and vehicle path regeneration.

3. Export the data into Synchro to initiate a simulation network.

Findings and Conclusions

The test application demonstrated the integration of TransCAD, DTA, and Synchro as well as the successful application of converting a TransCAD network to DTA, and a subarea from DTA to Synchro. Results from the case study show significant time savings by using the proposed method compared to traditional manual methods.

The positive features during this conversion process include the following:

- Efficient conversion from a TransCAD model to a DTA model
 NeXTA only requires a few configuration files and automatically converts the entire network and assigns vehicle trips based on OD matrices from TransCAD. Future subarea analysis and conversion can start from the DTA model, which saves the effort of converting the TransCAD model again.

- Easy creation and visualization of a subarea
 The boundary of a subarea can be easily defined by drawing a boundary polygon. NeXTA automatically extracts data within the subarea and creates all the necessary files for the subarea to function as an independent network.

- Automatic calibration with ODME
 NeXTA/DTALite integrates a built-in ODME tool to match field link volumes to simulated volumes, providing more accurate vehicle paths for both the entire network and subarea.

- Initial signal estimation function by QEM
 NeXTA provides an effort-saving tool using HCM’s Quick Estimation Method to automatically estimate initial signal phasing and timing for a signalized intersection.
• Exporting a network from NeXTA to Synchro

NeXTA can successfully convert a network to a Synchro-compatible data format. This link is beneficial to agencies as an effective conversion tool.

• Exporting a network from Synchro to VISSIM

Synchro features a tool to convert its model to VISSIM simulation, which is a beneficial linkage for traffic agencies if need for using VISSIM simulation arises.

Issues and special considerations during the test application of the project are documented as follows:

• Due to the different level of details in macroscopic and microscopic simulation, certain details of road geometry are not available from TransCAD or DTA models. When lane-related details (such as lane merging, lane widening and turning lanes) are desired to be modeled in micro-simulation, manual efforts are still needed.

• NeXTA/DTALite software package is in ongoing progress of feature developing and improving, which may cause changes to software functions influencing the conversion process or software stability.

• Once the network is converted in Synchro, manual check and adjustment is desired to make sure the simulation can be correctly run in SimTraffic. Adjustments may include node-link connection, turning volumes balancing, and signal optimization.
1. Introduction

1.1 Problem Statement

Travel demand forecasting models such as TransCAD have been used by MPOs and state DOTs for planning future transportation systems. Most travel demand models only provide macroscopic level analysis that is generally not sufficient to capture the operational details needed for microscopic level analysis. For example, no travel demand model can so far provide accurate operational analysis for signalized intersections by taking detailed signal timing and turn-lane pockets into consideration. In these models, freeway operations are generally assessed based on static empirical equations consisting of variables such as number of lanes, free-flow speed, and vehicle composition.

Over the past two decades, computing technology has significantly advanced. Using microscopic traffic simulation models is a common practice when large scale design projects are involved. Microscopic simulation tools, such as Synchro/SimTraffic, account for the movements of individual vehicles dynamically and stochastically in the network on a second-by-second basis and provide more detailed information for microscopic level analysis. However, constructing a microscopic simulation model from scratch still consumes a significant amount of resources. The reason for adopting the macroscopic level analysis in travel demand models is mainly due to constraints imposed by modeling large-scale transportation networks. For traffic operations analysis and design, travel demand models do not satisfy the needed details.

In practice, there has been a disconnection between planners and traffic engineers. Transportation planners who perform travel demand forecasts rarely get into the operational level. Similarly, traffic engineers who conduct operational analysis using forecasted traffic demands often do not know the underlying principles and constraints of travel demand models. Although planning agencies always desire detailed traffic operational analyses, the significant effort involved in constructing a traffic simulation model often prohibits such detailed simulation modeling.

State and local agencies often conduct corridor studies where detailed traffic operational analyses are desired. Due to major efforts involved in constructing a traffic simulation model, corridor studies are generally kept at the Highway Capacity Manual procedure level. Travel demand models contain most of the data needed for constructing traffic simulation models. Additional data can be added to most travel demand models using their data management tools. Expanding travel demand models to microscopic simulation is anticipated to be a major trend in future transportation studies. This research is specifically designed to address this need. A successful completion of the project will significantly benefit RTC and other transportation agencies in saving effort to construct microscopic simulation models.
1.2 Background

The importance of linking the different levels of traffic model has long been recognized by transportation agencies and professionals. A pioneer research was led by Dr. Van Aerde at Queens University in Canada by developing the INTEGRATION software [1]. INTEGRATION is a microscopic simulation model that uses similar information from travel demand models, such as node and link information and an origin-destination matrix. INTEGRATION was developed under the DOS operating system. Being innovative in linking travel demand modeling and micro-simulation, this model once received well recognition from the transportation community. Unfortunately, INTEGRATION stopped further development after Dr. Van Aerde passed away in 1998. Horowitz developed a meso/micro scale traffic simulator, which allows a region of micro simulation to be defined within a larger, mesoscopic simulated Automated Highway Systems (AHS) [2]. A layered organization of data was adopted for cross-resolution representation, which has a network layer, link layer, coordination layer, regulation layer, and physical layer. The layered organization greatly increases computational efficiency when conducting analysis from the vehicle level to the traffic flow level. Burghout et al. developed hybrid traffic simulation models integrating Mezzo, an event based mesoscopic model, and two microscope simulation models, MITSIMLab and VISSIM respectively [3] [4]. In these hybrid simulation models, Mezzo is used to simulate regional network and the subarea of specific interest is studied by micro simulators. Consistency is given high priority in the integration of route choice, network representation, and traffic dynamics, etc. Though a component based technique was applied in the integration of micro simulators, some of the functionality had to be implemented in different way. Casas et al. developed a hybrid simulation system which can provide both mesoscopic and microscopic simulation runs [5]. A Meta-Event-Oriented Simulator was designed to synchronize both models. It was reported that this hybrid approach can take advantage of the microscopic simulator’s accuracy without sacrificing the computational benefits offered by the mesoscopic model. Li et al. constructed a GIS-based multi resolution complex network, providing platform for the study of the dynamic evolution of urban traffic network failures [6].

Over the past two decades, several commercial software packages have been developed to link travel demand forecasting with traffic simulations. Caliper Corporation developed a software package consisting of TransCAD and TransModeler. TransCAD is a GIS-based travel demand model, and TransModeler is a micro simulation model. Both models use a similar user interface, making the transition between the two models much easier. Another similar software package is VISUM (travel demand) and VISSIM (simulation), both developed by PTV Inc. A VISUM network can be directly converted into VISSIM using its export function. While these software packages are considered a significant advancement in linking travel demand modeling with traffic operations, the conversion is only possible between the models produced by the same developer.
It does not address the common problem facing many transportation agencies, where the problem is that the commonly used travel demand models and traffic simulation models used are normally not from the same developer. For example, in Nevada, TransCAD is the primary travel demand model, while VISSIM, CORSIM, and Synchro/SimTraffic are widely used traffic simulation models. Each software package has its own strengths and weaknesses that made it suitable for certain applications, depending on the type of transportation improvement or planning analysis being considered. SimTraffic was found to be an easy-to-use model even for inexperienced model users and its graphical interface resulted in coding times significantly shorter. Its ability to export to CORSIM and VISSIM format also makes it an ideal starting point when creating more complex networks. Transportation planners may wish to use Synchro/SimTraffic to conduct signal and corridor studies.[7]

To address the need for linking the transportation planning process and traffic operations analysis, the FHWA developed a series of guides[8][9]. One of the critical issues identified in the guides is that the demands produced by travel demand models are not as capacity constrained as they need to be in the simulation models. As a result, simulation models may produce unrealistic performance measures when demand-higher-than-capacity conditions exist for the calibration year or a future year. In this case, a travel demand model must be adjusted to more realistic levels to reflect the physical limitations of the network. Adjustments can be accomplished by two approaches: (1) outside of a travel demand model; and (2) within a travel demand model. The first approach is traditional, and the second one requires an interface to allow additional user inputs within the travel demand model.

Linking travel demand modeling and traffic simulation has been attempted in several large scale transportation projects. However, very few published literature can be found to document these projects. The New York City Department of Transportation developed a platform that links travel demand forecasting, mesoscopic simulation, and microscopic simulation processes[9]. Their experience with such an approach was quite rewarding, but also challenging. A significant effort involved calibrating the simulation models using the forecasted traffic demands. A project in California demonstrated an integrated planning-operation process on a managed lane facility (SR-52) in San Diego, CA[11]. In this project, future demand was estimated from the regional travel demand model, and the operational assessment was performed using a traffic simulation model. To ensure that the traffic patterns in the two models were compatible, a customized static origin-destination (OD) matrix was developed. An iterative process was used to balance the demand between the elements of the facility, especially when traffic moved between the managed lanes and the general purpose lanes. The final OD matrix provided an accurate estimate of future traffic, allowing for the analysis of operational strategies on the managed lanes.

Another project found in the literature focused on evaluating work zone traffic control strategies
using both a macroscopic planning level model and microscopic traffic simulation model \[^{12}\]. The study recommended the use of microscopic traffic simulation models for analyzing complex work zone locations and detailed traffic control strategies. These studies all demonstrated the significance and feasibility of combining travel demand modeling and traffic simulation, but they also pointed out the many challenges associated with such a practice.

It is evident that the objectives of large scale transportation projects can be better met by combining travel demand models and traffic simulation. However, there are both technical and theoretical challenges when initiating such an integrated process. The lack of a linkage between travel demand modeling and traffic simulation often presents a barrier between planners and engineers. Software tools are needed to directly convert travel demand models to simulation models from different developers.

1.3 Project Objective

Though many tools have been developed in this field, they are usually dedicated to a single type of resolution which cannot satisfy the various modeling needs. Therefore, cross-resolution conversion has become a hot topic in linking traffic planning models and traffic simulation models.

Though each of the resolution tools has its own advantages and applicable areas, it seems that none of them alone is capable of conducting subarea studies. Therefore it is of high importance to develop a multi-resolution simulation tool which can fulfill the need to conduct subarea studies. However, it is reasonable to take advantage of the single resolution tools rather than building one from scratch.

The primary objective of this research is to develop methodologies and software tools for linking travel demand modeling and traffic simulations. Following Phase I of this research which developed a tool converting TransCAD to VISSIM, Phase II of this study focuses on converting TransCAD to Synchro/SimTraffic.
2. Modeling Methodologies

2.1 Cross-Resolution Simulation Method

Typically three sets of data are required for micro-simulation, including roadway network, traffic demand, and traffic control information.

Network in TransCAD is represented by nodes and links, while in micro-simulation models network usually consists of nodes, links and lanes. TransCAD contains a majority of the network profiles needed for constructing a Synchro/SimTraffic model, except for the detailed lane configurations. Although TransCAD may store number of lanes for each link, it lacks the required level of detail to reflect lane merging, lane widening and more detailed turning lane configurations at intersections. Thus a link-based network should be expanded to a lane-based network to achieve the required level of detail in Synchro/SimTraffic. NeXTA/DTALite can automatically transfer node and link profile from TransCAD to Synchro, however some more details require additional adjustments in Synchro interface.

Traffic demand in Synchro/SimTraffic is represented by turning volumes at each node, unlike VISSIM or CORSIM which requires OD matrices and routes. TransCAD models have assigned trips in the entire network, and they need to be extracted as turning volumes within a subarea consistent with the original network. NeXTA/DTALite can import OD matrices from TransCAD, perform dynamic trip assignment that matches the trips in TransCAD, and export the trips in a subarea.

As a macroscopic tool, TransCAD does not analyze detailed traffic control information either at nodes or along the links. Some TransCAD models may contain traffic control type as an attribute of nodes but are usually limited to certain general types (e.g. stop control, no control, signalized, etc). Micro-simulation tools, on the contrary, look into traffic control information reflecting real practice as closely as possible. The level of detail requires additional data that TransCAD does not provide. HCM 2010 Quick Estimation Method can be utilized in this research to generate intersection signal data for simulation. Synchro is also capable of initiating signal data needed for SimTraffic simulation.

Based on the data sets requirement for Synchro/Simtraffic and data availability in TransCAD, three critical issues in TransCAD-to-Synchro conversion are addressed in the research. First, a link-based TransCAD network needs to be expanded to a lane-based network. Second, traffic volumes need to be regenerated within subarea to reflect vehicles’ specific routes. Third, signal control data need to be generated or coded for simulation. The conversion process includes the following functions:
1. Define and extract a subarea network.
2. Check node properties and make modifications if needed.
3. Reconstruct virtual centroids in the subarea.
4. Regenerate and extract vehicle paths in the subarea consistent with original traffic volumes.

The consistency of network topology and vehicle dynamics should be maintained at all times when converting from the macro to the micro level. Figure 2-1 shows the main conversion process and the mapping between objects of different resolutions.

A universal macro-level planning model consists of a network and aggregated vehicle behaviors, as shown in the left column of Figure 2-1. There are both physical nodes/links and virtual centroids in the network. Data needed by a typical micro-simulation tool can also be categorized into network data, vehicle data and signal timing data, as shown in the right column of Figure 2-1, with different resolution requirements. For example, the micro-level network should be lane-based; each individual vehicle should have its own behavior. The center column in Figure 2-1 shows the framework of the conversion process from macro-level to the micro-level model. The network conversion module expands physical nodes into intersections, and links into roads. Virtual centroids are reconstructed into vehicle sources and sinks. Turning volumes are needed for generating appropriate signal timing.
A mesoscopic traffic assignment is conducted to obtain the path flows. In an extracted subarea, although link volumes are the same as the original network, they cannot be used directly in Synchro. Therefore, the light-weight traffic assignment tool DTALite is used to generate path flows and convert them into turning volumes.

2.2 Conversion Process

The conversion process is carried out in three steps.

1. Develop a DTA model by importing network data and OD matrices that were exported from TransCAD, and then performing dynamic traffic assignment for the entire network.

2. Extract a subarea, and convert the subarea to Synchro-compatible data formats. The key features in the conversion are node properties modification, virtual centroids treatment, and vehicle path regeneration.

3. Import the data in Synchro to initiate a simulation network.

The first step is the development of DTA model for the entire TransCAD network. In this step, the network data from TransCAD is exported in the format of shape files, and the OD matrices are saved as plain text files. Field names in shape files may be different from those used in NEXTA. Therefore, the configuration file is proposed, which could be edited to map the field data between TransCAD and NeXTA. And then the shape files can be directly imported into NEXTA. Together with the plain text format OD matrix, all necessary data for the traffic assignment process is ready to produce vehicle paths needed for microsimulation.

The next and essential step of the conversion is to define a subarea, convert the network and vehicle data of the subarea to Synchro. Link volumes in TransCAD are not enough to run microsimulation. Instead, specific vehicle paths or turning volumes at intersections need to be provided. In the case of Synchro/SimTraffic simulation, turning volumes are required. This step is accomplished by utilizing many features in NeXTA/DTALite package. Control type can be modified for modes in the subarea. Virtual centroids will be converted into physical nodes. A dynamic assignment algorithm will produce the vehicle paths based on the original OD matrix. Finally a well-prepared subarea can be exported in the format compatible to Synchro.

The last step of the conversion is to import the data sets in Synchro to initiate a simulation subarea network. It’s expected for users to make adjustments in Synchro to reflect realistic situation before running SimTraffic simulation. Adjustments may be needed for turning pockets configuration, signal timing and network connection check.

2.2.1 DTA Model Development
A dynamic traffic assignment (DTA) model can be developed given the network and traffic demand from TransCAD. The DTA tool used in this project is NeXTA/DTALite package.

NeXTA reads Origin-Destination (O-D) demand data and associated network with Traffic Analysis Zone (TAZ) profiles. Then the DTALite assigns vehicles to different paths based upon varied link travel time across a section of time. Such assignment achieves equilibrium according to time-dependent shortest path algorithm or other assignment rules, constrained to a set of speed-density relationship and capacity of links and to the traffic signal timing (if any) at each node. Model calibration is optional for the purpose of the conversion, but is preferred if data availability allows.

2.2.2 Subarea Extraction and Conversion

Microscopic simulation models are typically employed to represent finer resolution of traffic dynamics by simulating the movement of individual vehicles \(^{[14]}\). They are usually applied to analyze traffic operations in a local area, often limited to corridor level evaluations. Synchro is not designed for analyzing large-scale network nor is it practical to convert the entire TransCAD network into Synchro. Therefore, the conversion only applies to a subarea network (either a corridor or smaller area). Users can define a subarea in NeXTA by drawing the boundaries and performing subarea cut. Once the subarea of interest is defined, the following functions should be included in order to generate data needed for Synchro/SimTraffic simulation.

Node Properties Modification

As mentioned in earlier sections, some TransCAD models may contain traffic control type as an attribute of nodes. It is necessary to check the node data provided in TransCAD and make modifications accordingly. NeXTA categorizes node control types into eight types. Table 2-1 lists the node control types available in NeXTA.

<table>
<thead>
<tr>
<th>Control Type Code</th>
<th>Control Type Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unknown</td>
</tr>
<tr>
<td>1</td>
<td>No Control</td>
</tr>
<tr>
<td>2</td>
<td>Yield Sign</td>
</tr>
<tr>
<td>3</td>
<td>Two Way Stop Control</td>
</tr>
<tr>
<td>4</td>
<td>Four Way Stop Control</td>
</tr>
<tr>
<td>5</td>
<td>Pretimed Signal</td>
</tr>
<tr>
<td>6</td>
<td>Actuated Signal</td>
</tr>
<tr>
<td>7</td>
<td>Roundabout</td>
</tr>
</tbody>
</table>

Depending on the original node data in TransCAD, users need to check the node properties in NeXTA, verify if the coded control types are consistent with actual traffic operation, or manually...
code in node control types if such data was absent in the TransCAD model. For example, if TransCAD only categorizes node types as signalized and unsignalized, users need to specify which control type listed in Table 2-1 a node falls into.

This step is necessary to produce more accurate trip assignment results and later to estimate signal timing.

Virtual Centroids Treatment

Regional travel demand models (TDMs), such as TransCAD models, are typically applied for regional or large-area transportation planning. Local roads and streets are generally not modeled in these planning models. Local roads and connectors are usually aggregated into TAZs. Centroids and connectors of a Traffic Analyzing Zones (TAZs) are virtual objects carrying trip production, attraction and transferring between the real traffic networks.

How virtual objects should be treated is essential in the conversion process. If virtual centroids and connectors are left untreated in conversion from TransCAD to microsimulation, centroids and points where connectors are joined into the physical network will become intersections, therefore some unrealistic vehicle paths may occur. For example, some paths may be routed through a zone centroid which should be avoided in micro-simulation.

The common methods used in the conversion are introduced in the final report of Linking Travel Demand Modeling with Micro-Simulation (Phase I). This report will not repeat the methods but only introduce the method that is applied in this project. NeXTA integrates a tool “Generate Physical Zone Centroids on Road Network”. This tool converts the zonal connectors to side streets within the subarea, and replaces zone centroids with additional nodes so that no paths can be routed through a zone centroid. Executing this tool ensures the resulting subarea is compatible with Synchro and consistent with the original network.

Vehicle Path Regeneration

Once the subarea is cut, it’s recommended to perform dynamic traffic assignment by executing DTALite to regenerate vehicle paths for the subarea. The vehicle path regeneration process can, if data availability allows, include ODME (Origin Destination Matrix Estimation) calibration to match link counts to simulated volumes.

Since a typical TransCAD model does not contain signal information, NeXTA can approximate signal phasing and timing using the HCM’s QEM. This step is optional in the conversion process because Synchro can also generate signal timing once the network and travel demand data is provided.
2.2.3 Exporting Subarea into Synchro/SimTraffic

After the subarea is defined and the above mentioned process is done, the subarea can be exported to Synchro and PTV Vissim for further analysis.

NeXTA is capable of writing its network data in the UTDF CSV format that is compatible with Synchro. Some manual adjustments and data verification may still be needed in Synchro.
3. Data Structure

This chapter describes the data structure used in NeXTA and DTALite. Input data files are the required data for developing a DTA model. Output data are the DTA model results associated with both the entire network and subarea.

3.1 Input Data

Input files used in NEXTA and DTALite can be categorized into network input files, demand input files, optional input files, and scenario input files.

3.1.1 Network input files

The necessary components for the traffic model are zones, links, and nodes. Each of these elements needs to be defined with certain attributes which must have assigned values. In DTALite and NEXTA, the network input files define the basic node-link structure, along with attributes for each link and node. Additionally, nodes are related to zones and activity locations, which can be used to disaggregate trips from zones to nodes and activity locations.

Table 3-1 lists the essential input files describing the network.

<table>
<thead>
<tr>
<th>Essential Files</th>
<th>Description</th>
<th>Required Attributes</th>
<th>Corresponding Information Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_node.csv</td>
<td>Defines all nodes in the network</td>
<td>node_id, x, y</td>
<td>Node Layer</td>
</tr>
<tr>
<td>input_node_control_type.csv</td>
<td>Definition for the control type of the nodes</td>
<td>input_node_type, input_node_type_name</td>
<td>Node Layer</td>
</tr>
<tr>
<td>input_link.csv</td>
<td>Defines all links in the network</td>
<td>link_id, from_node_id, to_node_id, length, speed_limit, number_of_lanes, lane_capacity</td>
<td>Link Layer</td>
</tr>
<tr>
<td>input_zone.csv</td>
<td>Definition for the link types in the network</td>
<td>zone_id</td>
<td>Zone Layer, that can be created by users</td>
</tr>
</tbody>
</table>
Data Structure

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_activity_location.csv</td>
<td>Defines zones in the network. Used to visualize zones in KML and Google Fusion Tables</td>
<td>zone_id, activity location, Activity Location Layer</td>
</tr>
<tr>
<td>input_link_type.csv</td>
<td>Defines how nodes are connected to zones</td>
<td>Input_link_type, Link Type Definition: default file is available</td>
</tr>
</tbody>
</table>

1. Node Layer (input_node.csv and input_node_control_type.csv)

The `input_node.csv` file is an essential input data, which can be exported from TransCAD. The `input_node_control_type.csv` file is pre-defined to describe the control type of the node. In these files, the nodes in the network are defined by the terms of names, ID numbers, control type, location/position, and geometry.

Each node has a unique node ID. The node ID value must match the values used in the “From Node” and “To Node” terms in the link attribute table.

The control type is to designate what kind of control device is used in an intersection. And each control type is also identified with a unique value. Eight control types are provided in CCT as default: unknown control, no control, yield sign, 2-way stop sign, 4-way stop sign, pre-timed signal, actuated signal, and roundabout.

2. Link Layer (input_Link.csv and input_link_type.csv)

The `input_link.csv` file defines all links in the network, along with corresponding characteristics and traffic flow model input data. And it can also be exported from TransCAD. Several options are included in modeling microscopic simulations. The `input_link_type.csv` file is defined for the link types of the links in the network. Both files include essential input data. In these files, the links in the network are defined by link ID, from node, to node, direction, length in miles, number of lanes, speed limit, lane capacity, link type, jam density, and wave speed.

The link ID is expressed as an integer, and each link is identified by a unique number. The “from_node_id” and “to_node_id” item separately correspond to the node ID of the beginning node to the ending node of the link. And the numbers must match the values assigned to that node in the node attribute table. The direction attribute defines the direction of the link, in which 0 is stands for a two-way link, and 1 stands for a stand for one-way link. The length in miles is a double type of data, describing the length of the link between end nodes. The number of lanes defines the number of lanes on the link in each direction. The speed limit attribute is an integer defining the free-flow speed (miles per hour) on the link. In default conditions, the link will be automatically assigned a speed of 5 m/h. The lane capacity defines the capacity of a link in vehicles per hour per
The link type is an assigned integer to describe the type of link. It should be categorized based on the street type. In general, there are 12 kinds of link types defined by default in the table: freeway, highway, principal arterial, major arterial, minor arterial, collector, local, frontage roads, ramps, zonal connector, transit link, and walking link. Users are allowed to define their own specific link types as long as the flag variables are correctly used to identify how the different links are connected or related. Furthermore, the link type is also used to determine how the links are visualized in the windows of NEXTA.

3. Zone Layer (input_zone.csv and input_activity_location.csv)

The input_zone.csv file defines zones in the network. It is also used to visualize zones in KML and Google Fusion Tables. Another file named input_activity_location.csv is used to map the nodes to a zone, where multiple nodes may be associated with a zone.

The network files should be exported separately with each character, and all of them need to be saved in the same folder. The folder is from which the simulation will run, and to which all input and output files will be written.

3.1.2 Demand input files

Demand files are needed by DTALite as traffic assignment input files, to describe the number of trips between two given zones in a network. Table 3-2 lists the input demand files. The minimum required demand file is input_demand_meta_data.csv which provides demand table definition, and the associated demand files that are defined in input_demand_meta_data.csv.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input_demand_meta_data.csv</td>
<td>Defines the characteristics of demand data to be loaded by DTALite</td>
</tr>
<tr>
<td>input_demand_type.csv</td>
<td>Defines the characteristics for different demand types for the trips in the demand files</td>
</tr>
<tr>
<td>input_vehicle_type.csv</td>
<td>Defines different vehicle types for emissions analysis</td>
</tr>
<tr>
<td>input_vehicle_emission_rate.csv</td>
<td>Defines a lookup-table used for emissions analysis</td>
</tr>
<tr>
<td>input_VOT.csv</td>
<td>Defines different VOT distributions for different demand types</td>
</tr>
</tbody>
</table>

1. Demand (input_demand_meta_data.csv, input_demand_type.csv, and associated demand tables)

In NeXTA, The input_demand_meta_data.csv file is the hub for providing demand to zone directly. It defines which file(s) should be used for demand information, and how the files are formatted. It presents the time-dependent Origin -Destination (OD) Demand Matrix, which is used
by DTALite for a traffic assignment. Users can add the multiple demand files in the demand_meta_data.csv file to specify time-dependent demand profiles. In the file, the start_time and end_time defines the demand files working in the corresponding time interval.

The input_demand_type.csv file gives the information about number of demand types and demand type number for input_demand_meta_data.csv. It defines different demand type characteristics for the trips in the input_demand.csv file. Three different demand types are set by default. For 1 = SOV, 2 = HOV, 3 = Trucks, and additional types can be defined by the user.

Figure 3-1 shows the relationship among different relevant files.

![Figure 3-1 Relationship among different demand files](image)

2. Vehicle Parameters (input_vehicle_type.csv and input_vehicle_emission_rate.csv)

The input_vehicle_type.csv file defines the vehicle types used in the traffic model. Five vehicle types are defined by default: 1 = passenger car, 2 = passenger truck, 3 = light commercial truck, 4 = single unit long-haul truck, and 5 = combination long-haul truck.

The input_vehicle_emission_rate.csv file defines a lookup-table used for emissions analysis. In the table, the relationship is mapped between emission rates and energy, under vehicle types and operating modes. The CCT provides default values based on empirical data and other research, however, the users is allowed to modify the energy consumption levels and emission rates of different vehicle types. By this form, NEXTA can create the quantity of CO₂, CO, NOₓ, and HC emissions.

3. Driver Parameter (input_VOT.csv)

The input_VOT.csv file is used to define different values of time distributions for different demand types. Refer to the sample Excel import tables in the Sample_Excel_Import_Files folder
for some practical formulations in calculating VOT based on trip purposes. Like other files assigned a default value, this file also allows the user to define the value of time distributions across different demand types.

3.1.3 Optional files

Four types of files are proposed as optional inputs for NEXTA or DTALite.

Files `input_movement.csv` and `input_phase.csv` are related to traffic signal controls.

File `input_sensor.csv` is used for input data by DTALite for Origin Destination Matrix Estimation (ODME). File `input_subarea.csv` is used for the input table by NEXTA to manage subarea analyses. Table 3-3 lists all the optional input files.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>input_movement.csv</code></td>
<td>Defines all turning movements at a node in the network</td>
<td>Excel</td>
</tr>
<tr>
<td><code>input_phase.csv</code></td>
<td>Defines a phase for signal control at a node in the network</td>
<td>Excel</td>
</tr>
<tr>
<td><code>input_sensor.csv</code></td>
<td>An optional input used for importing sensor data</td>
<td>Excel</td>
</tr>
<tr>
<td><code>input_subarea.csv</code></td>
<td>Defines a subarea polygon, based on its vertices, for subarea cut</td>
<td>NEXTA</td>
</tr>
</tbody>
</table>

The optional `input_movement.csv` file defines intersections that have special movement patterns in the network. By default, the input file has connected all possible movements in the intersection. The movement contains the U-Turn, Left Turn, Through, and Right Turn. The user is allowed to add or delete movements as needed. The optional `input_phase.csv` file defines the phases for signal control, which will be empty by default. Since the DTALite simulation engine is not dependent on signal timing to influence node or turning movement capacities, these files are not essential in developing DTA models.

The optional `input_sensor.csv` file is used as an input for importing sensor data into NEXTA and DTALite. DTALite uses this data for Origin-Destination demand calibration and NEXTA can visualize the calibration results.

The optional `input_subarea.csv` file defines a subarea polygon based on its vertices and is used in NEXTA for subarea analysis.

3.1.4 Scenario input files

Other parts of input files need to be prepared in scenario input files, which describe different network conditions. With that the effects on operations can be evaluated. Different scenarios available include tolling, dynamic message signs, incidents, and work zones. Table 3-4 lists all of
the scenario input files.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>scenario_link_based_toll.csv</code></td>
<td>Defines the location and characteristics of tolls in the simulation</td>
</tr>
<tr>
<td><code>scenario_dynamic_message_sign.csv</code></td>
<td>Defines the location and characteristics of variable message signs in the simulation</td>
</tr>
<tr>
<td><code>scenario_incident.csv</code></td>
<td>Defines the location and characteristics of incidents in the simulation</td>
</tr>
<tr>
<td><code>scenario_work_zone.csv</code></td>
<td>Defines the location and characteristics of work zones in the simulation</td>
</tr>
</tbody>
</table>

The `scenario_link_based_toll.csv` file is used to define different scenario tolling conditions on a road segment in the simulation. Currently, three classes of vehicles (Single Occupancy Vehicles, High Occupancy Vehicles, and Trucks) are defined for different toll pricing, and each of vehicles is assigned the charge to travel across the link.

The `scenario_dynamic_message_sign.csv` file defines the location and characteristics of the message signs in the simulation, which will influence driver’s route choice. The response percentage is provided in a table to describe the real time information displayed on the sign.

The `scenario_incident.csv` file is used to define the location and characteristics of incidents in the simulation. They may include any conditions which will reduce the capacity, and also can be applied for general incidents.

The `scenario_work_zone.csv` file is used to define the location and characteristics of work zones in the simulation, which is described in terms of capacity reduction (%), project duration and speed reduction.

3.2 Output Data

After the dynamic assignment is executed, the results are recorded in forms of output files. A series of .csv files are created in the project folder. Every output file contains detailed information on certain aspects in the simulation. There are two parts of output data from DTALite output and NEXTA export, which include information such as measures of effectiveness (MOEs), travel time, speed, traffic volume, and queuing. Furthermore the output data offer several spatial resolutions (link, path, OD, and network) in time-dependent and static forms. Additional non-MOE information, such as traffic assignment log data and the results of post-processing functions for evaluating emissions, safety, and travel time reliability, is also available through the output files.
3.2.1 DTALite output files

Table 3-5 lists all of the DTALite output files.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output_summary.csv</td>
<td>Scenario</td>
<td>Contains detailed information about traffic assignment iteration results</td>
</tr>
<tr>
<td>output_multi_scenario_results.csv</td>
<td>Scenario</td>
<td>Contains the simulation results for multi-scenario results</td>
</tr>
<tr>
<td>output_agent.csv</td>
<td>Vehicle/agent</td>
<td>Shows the specific information of each agent in the simulation network</td>
</tr>
<tr>
<td>agent.bin</td>
<td>Vehicle/agent</td>
<td>A binary version of output_agent.csv file</td>
</tr>
<tr>
<td>output_ODMOE.csv</td>
<td>OD</td>
<td>Contains ODMOE simulation results</td>
</tr>
<tr>
<td>output_pathMOE.csv</td>
<td>Path</td>
<td>Contains the specific information of path MOE</td>
</tr>
<tr>
<td>output_linkMOE.csv</td>
<td>Network</td>
<td>Contains detailed results from the simulation aggregated at each link</td>
</tr>
<tr>
<td>output_linkTDMOE.csv</td>
<td>Network</td>
<td>Contains less detailed results from the simulation, aggregated at each link</td>
</tr>
<tr>
<td>output_linkTDMOE.bin</td>
<td>Network</td>
<td>A binary version of output_linkTDMOE.csv</td>
</tr>
<tr>
<td>output_MovementMOE.csv</td>
<td>Network</td>
<td>Describes the MOE information of movement</td>
</tr>
<tr>
<td>output_NetworkTDMOE.csv</td>
<td>Network</td>
<td>Contains time-dependent, network-level information about assignment iteration results over the modeling horizon</td>
</tr>
<tr>
<td>output_vehicle_emission_MOE_summary.csv</td>
<td>Network</td>
<td>Describes all results from emissions post-processing</td>
</tr>
</tbody>
</table>

The output_summary.csv and output_multi_scenario_results.csv files are related to the scenario analysis. The former one contains detailed information about traffic assignment results, primarily related to travel time and origin-destination estimation; the latter one contains the simulation results for multi-scenario results.

The output_agent.csv file is provided to show specific information of each individual vehicle in the simulation network. The data is saved as a .csv file for better data processing. The agent.bin file is a binary version of the output_agent.csv file. The binary file is helpful in saving space, and can be renamed as input_agent.bin file as vehicle/path input into DTALite.

The output_ODMOE.csv file contains information about the demand and assignment results, which is aggregated over the modeling horizon for each origin-destination pair, disaggregated by
departure time.

The output_pathMOE.csv file contains specific information for path MOE. The output data describes each individual vehicle and its characteristics, its path in the network, and some of its path characteristics, such as its traveling distance.

The output_linkMOE.csv and output_linkTDMOE.csv files record the results from the simulation aggregated at each link, including safety and emissions data. Moreover, the second file contains time-dependent link MOE information about assignments in the network. The output_linkTDMOE.bin file is a binary version of the output_linkTDMOE.csv file to save the storage space. NEXTA will use this file to load DTALite simulation results for visualization. The output_MovementMOE.csv file is used to describe the MOE information of vehicle movement for all nodes in the network. The output_NetworkTDMOE.csv file contains time-dependent, network-level information about assignment iteration results over the modeling horizon, primarily related to cumulative flow into and out of the simulation. The output_vehicle_emission_MOE_summary.csv file describes all results from emissions post-processing, disaggregated to emission estimates for each individual vehicle in the simulation.

3.2.2 NEXTA output files

The output files in NEXTA are listed in Table 3-6.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS_OD_table.csv</td>
<td>Subarea cut</td>
<td>Outputs the OD time span volume</td>
</tr>
<tr>
<td>AMS_path_flow.csv</td>
<td>Subarea cut</td>
<td>Outputs the path flow</td>
</tr>
<tr>
<td>AMS_movement.csv</td>
<td>Subarea cut</td>
<td>Outputs the number of vehicles making movements in the intersections</td>
</tr>
<tr>
<td>AMS_link.kml</td>
<td>Exporting</td>
<td>For Google Earth visualization</td>
</tr>
<tr>
<td>AMS_link shape files</td>
<td>Network</td>
<td>For GIS visualization</td>
</tr>
<tr>
<td>UTDF files</td>
<td>Exporting</td>
<td>Files generated during Synchro exports</td>
</tr>
<tr>
<td>VISSIM ANM files</td>
<td>Exporting</td>
<td>Files generated during VISSIM exports</td>
</tr>
</tbody>
</table>

The AMS_OD_table.csv file describes the OD time span volume. The AMS_path_flow.csv file describes the path flow. The AMS_movement.csv file describes the movement information of vehicles between different nodes in the simulation. The movement is recorded as a three-node key, which describes when the movement starts at the first node, passes through the middle node, then arrives at the third node. The AMS_link.kml and several AMS_link shape files (dbf, shp, shx) are used to visualize different software, such as Google Earth and GIS. The UTDF and VISSIM ANM files are respectively used to export the result to Synchro and VISSIM. With the help of these files,
the CCT can ensure consistency between the TransCAD traffic assignment and simulated flow in VISSIM.

3.3 Settings Files

There are some files that users can define for NeXTA/DTALite settings. Default settings files are provided, but users can change the values if needed.

1. **Scenario settings file** *(input_scenario_settings.csv)*

 The *input_scenario_settings.csv* file is the essential input data for NEXTA. The scenario contains several attributes, such as number of assignment days, demand multiplier, traffic flow model, and traffic assignment method. The user is allowed to alter the attributes of the scenarios, as well as create various traffic scenarios that can be run simultaneously. Furthermore, the user is allowed to alter 12 different attributes for each scenario.

2. **MOE settings file** *(input_MOE_settings.csv)*

 The *input_MOE_settings.csv* file is the essential input data for NEXTA. This file is used to set the measure of effectiveness (MOE). It allows the user to evaluate the effectiveness of the entire network or smaller sections of a network and to identify the threshold value of user-defined links, paths, and origin-destination pairs.

3. **DTA settings file** *(DTASettings.txt)*

 The *DTASettings.txt* file is used to modify the configuration settings for running DTALite. There are several sections in this file, such as GUI, background image, assignment, simulation, emission, output, traveler information, input check, and safety planning configuration.

4. **ODME settings file** *(ODME_Settings.txt)*

 The *ODME_Settings.txt* file is used to define the setting for the Origin-Destination Matrix Estimation (ODME) used by DTALite. This file allows the user to alter some of the ODME characteristic. Some of the default options are provided to the user. They can be changed by the user for a practical situation; however, the default options should be sufficient for majority of users.
4. Case Study

To test the functionality and assist the users throughout the conversion process, the TransCAD model of Renp-Sparks area is used as a case study for the conversion process. Later the TransCAD model of Las Vegas metropolitan area is used. The user’s manual will be provided based on the Las Vegas network.

4.1 Reno-Sparks Network

Reno-Sparks DTA model was created based on a TransCAD model. The DTA Model was calibrated against field link volumes data on primary arterials and freeways using the built-in ODME tool.

Following the conversion steps (the details can be found in the next chapter – User’s Manual), a selected subarea network near University of Nevada, Reno was converted into VISSIM as shown in Figure 4-1.

![Figure 4-1 Subarea Conversion for Reno-Sparks Network](image)

Figure 4-1 shows a general extraction and conversion process. The subarea was extracted from the NeXTA (Up), then it was converted into a Synchro model (Middle), and a selected intersection was zoomed in to display its details (Bottom). While additional effort is needed to modify intersection geometry, the conversion is able to initiate a basic Synchro model and to reduce the effort of building a model from scratch.
4.2 Las Vegas Network

Similar to Reno-Sparks network, the Las Vegas TransCAD DTA model was created based on the network and demand data from its TransCAD model.

Because the detailed data provided in the two TransCAD models are different, the conversion process requires more steps for Las Vegas network. For example, since node control type is not provided in Las Vegas TransCAD model, users need to specify node control type for each node in the subarea before vehicle path regeneration. Generally the more detail available in TransCAD, the less effort will be needed in the conversion process.

Figure 4-2 shows a corridor converted from NeXTA to Synchro.

![Figure 4-2 Subarea Conversion for Las Vegas Network](image)
5. User’s Manual

This User’s Manual provides detailed steps from a TransCAD model to a subarea simulation in Synchro. The sample network used in the manual is Las Vegas network. In this chapter, the terms “Las Vegas network” and “the sample network” are interchangeable.

The software needed in this process include Caliper’s TransCAD, NeXTA/DTALite package, and TrafficWare’s Synchro. Users should install these software before attempting to convert any network.

Step 1: DTA Model Development

1-1. Export Network and Demand from TransCAD

1) Load the network in TransCAD

The Las Vegas network was coded in TransCAD and must be exported as a set of shape files. The network should be loaded in TransCAD by opening file TransCAD data\1225assign.wrk under the project folder. The Las Vegas network is shown in Figure 5-1.

Figure 5-1 Las Vegas Network Loaded in TransCAD
By using the export tool in TransCAD to export the network GIS shape files, the network is split into multiple component layers and saved as separate shape files. When exporting, the user should first select the layer name from the drop-down list highlighted in Figure 5-1, then use Tools→Export to export the selected layer as a GIS shape file. The output files should be named and saved in a new folder for future use.

2) **Export node layer**

To export the node layer, the user should select the node layer named “RTP13_35_2010_nodes” in the highlighted area shown in Figure 5-1, in the next pop-up dialogue (Figure 5-2) choose Tools→Export, and for the output type choose “ESRI Shape”, then click the OK button. The output file can be named as “node.shp”.

3) **Export link layer**

To export the link layer, the user should first select the link layer named “RTP13_35_2010” in the highlighted area shown in Figure 5-1, and then click the New Dataview icon to show the records of the link. The records indicate that the Las Vegas TransCAD model does not contain the relationship between nodes and links in the properties, therefore a connection between nodes and links that needs to be established.
4) Export OD matrix

NeXTA can read demand data in column format, matrix format, full matrix format, Dynasmart format. In the case of Las Vegas network, this manual introduces the steps to export demand data as matrix format.

The TransCAD demand data are located under folder \TransCAD\data with .mtx as file extensions. Open a matrix file in TransCAD, go to Matrix→Export tool (Figure 5-4a). In the next window, select "Export to a table with one record for each cell, with a field for each matrix" option and
select the matrices to be exported in the Matrices to Include in the list box, choose OK (Figure 5-4b). When saving the exported file, choose “Comma-delimited Text (*.txt; *.csv)” from the Files of type drop down list (Figure 5-4c). Repeat the steps for each OD matrix that should be included in the DTA model.

(a) Exporting Matrix in TransCAD

(b) Matrix Export Option in TransCAD

(c) Save Matrix

5) Save exported files in a convenient location

As a result of the exporting steps, all the shape files and demand matrices are created. It’s recommended to save all the files in a folder that’s convenient for future use. For the sample network, the exported files are all located under folder \Las_Vegas_Shapefiles and the demand files are saved in \Las_Vegas_Shapefiles\demand_data folder.
1-2. Import Network into NeXTA

The next step to develop the DTA model is to use NeXTA’s network import tool to convert the network shape files. In order for NeXTA to interpret the shape files for conversion, a configuration initialization (INI) file needs to be prepared to map field names between the shape files and the NeXTA format (which includes a series of CSV files).

1) Prepare configuration files for NeXTA

The required configuration files include (1) input_node_control_type.csv, (2) input_link_type.csv, (3) input_demand_meta_data.csv (and related demand files), and (4) import_GIS_settings.csv. To ensure that NeXTA imports a correct network profile, in this step the user needs to update the configurations of link types, node control types and GIS settings.

Link types to be imported into NeXTA should be consistent with the types used in original TransCAD network. If the TransCAD network has a different list of link types than the default values given in the NeXTA configuration files, input_link_type.csv file needs to be updated to reflect the current types. For the sample network, the updated link type is shown in Table 5-1.

<table>
<thead>
<tr>
<th>link_type</th>
<th>link_type_name</th>
<th>type_code</th>
<th>default_lane_capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>external links</td>
<td>c</td>
<td>99999</td>
</tr>
<tr>
<td>1</td>
<td>system to system ramp</td>
<td>r</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>minor arterial</td>
<td>a</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>major arterial</td>
<td>a</td>
<td>1000</td>
</tr>
<tr>
<td>4</td>
<td>ramp</td>
<td>r</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>interstate</td>
<td>f</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td>freeway</td>
<td>f</td>
<td>1000</td>
</tr>
<tr>
<td>7</td>
<td>expressway/beltway</td>
<td>a</td>
<td>1000</td>
</tr>
<tr>
<td>8</td>
<td>collector</td>
<td>a</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>centroid connector</td>
<td>c</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>local</td>
<td>a</td>
<td>1000</td>
</tr>
<tr>
<td>11</td>
<td>HOV lanes</td>
<td>a</td>
<td>1000</td>
</tr>
<tr>
<td>14</td>
<td>transit link</td>
<td>t</td>
<td>1000</td>
</tr>
<tr>
<td>15</td>
<td>transit access link</td>
<td>t</td>
<td>1000</td>
</tr>
</tbody>
</table>

The input_node_control_type.csv file should also be updated with the current control type, especially for signalized intersections. Codes for control types must be consistent with the settings in network profile exported from TransCAD. For the sample network, since TransCAD does not contain control type data for nodes, it is not necessary to update the file according to TransCAD model. However the file is still needed for later use. Table 5-2 shows the configuration used for
the sample network.

<table>
<thead>
<tr>
<th>control_type_name</th>
<th>unknown_control</th>
<th>no_control</th>
<th>yield_signal</th>
<th>2way_stop_signal</th>
<th>4way_stop_signal</th>
<th>pretimed_signal</th>
<th>actuated_signal</th>
<th>roundabout</th>
</tr>
</thead>
<tbody>
<tr>
<td>control_type</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

The `import_GIS_settings.csv` file is to identify and connect the fields in the input shape file to the AMS data hub schema data format, allowing NeXTA to read the network geometry from shapefiles and create an AMS data hub compatible transportation network project (.tnp) file (which is readable by both DTALite and NeXTA). Figure 5-5 shows a screenshot of the beginning section of the GIS setting file.

All the prepared configuration files for the Las Vegas sample network are located in the `Las_Vegas_Shapefiles` folder.

<table>
<thead>
<tr>
<th>section</th>
<th>key</th>
<th>value</th>
<th>required_or Optional</th>
<th>allowed_values</th>
</tr>
</thead>
<tbody>
<tr>
<td>file_name</td>
<td>node</td>
<td>node.shp</td>
<td>desired</td>
<td></td>
</tr>
<tr>
<td>file_name</td>
<td>link</td>
<td>link.shp</td>
<td>required</td>
<td></td>
</tr>
<tr>
<td>file_name</td>
<td>zone</td>
<td>zone.shp</td>
<td>desired</td>
<td></td>
</tr>
<tr>
<td>file_name</td>
<td>centroid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>configuration</td>
<td>with_decimal_long_lat</td>
<td>yes</td>
<td>yes;no</td>
<td></td>
</tr>
<tr>
<td>configuration</td>
<td>length_unit</td>
<td>mile</td>
<td>km; mile</td>
<td></td>
</tr>
<tr>
<td>configuration</td>
<td>number_of_lanes_oneway_vs_twoway</td>
<td>oneway</td>
<td>oneway; twoway</td>
<td></td>
</tr>
<tr>
<td>configuration</td>
<td>lane_capacity_vs_link_capacity</td>
<td>link</td>
<td>lane; link</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-5 Beginning Section of input_GIS_settings.csv

2) Use NeXTA’s import network tool to convert the network

Starting with a new empty network project in NeXTA, the import was initiated by using NeXTA’s Import GIS Planning Data Set tool under Menu→File→Import→GIS Planning Data Set.

After the successful conversion process, NeXTA displays a "File Loading Status" window as shown in Figure 5-6.
The final imported Las Vegas network is shown in Figure 5-7.

Figure 5-6 NeXTA File Loading Status Window

Figure 5-7 Illustration of Imported Network in NeXTA
3) **Save the new network as a new project file**

The last step is to create a new destination folder and to save the network as a new network project (File→Save Project As) in the created folder, and the new network can now be manipulated through NeXTA. It should be noted that if there are multiple OD tables (see next section), the user needs to manually add multiple OD demand files to the new project folder.

For the sample network, the new project folder is named `\Las_Vegas_DTAmodel`.

1-3. Read Network and Demand Data into NeXTA

Similar to the INI file, the `input_demand_meta_data.csv` file is used by NeXTA to find and read the O-D tables exported from TransCAD models. This metadata file requires several entries, but the relevant entries include the following:

- **File name**: specifies the demand file name to be read (e.g. `demand_data\da0-7.csv` is the first demand file of the sample network).
- **Format**: specifies the data format of the demand file (e.g. `matrix` is the format of all demand files of the sample network).
- **Number of lines to be skipped**: specifies the number of lines in the demand file to be skipped by DTALite (e.g. 0 for the sample network demand files).
- **Start and end times**: the loading start time and end time for the demand file. (e.g. minutes 420 or 7am).

The prepared `input_demand_meta_data.csv` file for the sample network is located in `\Las_Vegas_DTAmodel` folder. The OD matrices files are located in `\Las_Vega\demand_data` folder.

1-4. Run Assignment with DTALite to Equilibrium

The dynamic traffic assignment simulation is performed by DTALite which is directly accessed by pressing the Run Simulation button located in the toolbar menu. Simulation settings should be edited in the `input_scenario_settings.csv` file prior to initiating the assignment engine.

The popup window that appears shows the defined settings, and allows a selection of the traffic flow model, traffic assignment method, the number of iterations, and the demand loading multiplier, as shown in Figure 5-8. When the selections are made, pressing “Run Simulation”
button will start the DTA simulation.

DTALite is an efficient simulation engine. For the sample network with 20 simulation runs for about 310,000 vehicles, DTALite took 9 hours 23 minutes of computational time on an Intel® Core i7-3630QM T7500 (2.4 GHz) with 32 GB RAM. It’s recommended to run DTA simulation in more powerful work stations within much shorter time.

![Review Simulation/Assignment Settings](image)

Figure 5-8 Model Selection for Running Traffic Assignment

Step 2: Subarea Extraction and Conversion

Before converting the DTA model to Synchro, the user needs to define a subarea or corridor that fits Synchro’s simulation ability. The original Las Vegas network is too large for Synchro to handle, neither practical for microscopic simulation analysis. NeXTA simplifies the subarea creation process by automatically handling extraction of necessary nodes, links, zones, and O-D tables.

2-1. Cut a Subarea within the Larger Network

Using **Edit→Create Subarea** tool in NeXTA, a subarea boundary can be drawn around the subarea of interest. The boundary must be a closed polygon. Figure 5-9 shows the defined subarea in the test process. The links and nodes within the boundary are highlighted, which allows a visual assessment of the boundary so that adjustments can be made if needed.
Right click in the main display frame, then select **Perform Subarea Cut** (Figure 5-10a), the tool will automatically remove all of the network objects (nodes and links) outside of the subarea boundary and extracted links, nodes, zones, O-D pairs, and subarea path records. A message window will pop out when subarea cut is finished (Figure 5-10b).

The subarea needs to be saved as a new project in a separate folder. The sample subarea was saved in the `\subarea` folder.

2-2. Generate Physical Zone Centroids on Road Network

The **Generate Physical Zone Centroids on Road Network** Tool under Tools→Network Tools in NeXTA converts the zonal connectors to side streets within the network. This tool replaces zone centroids with additional nodes so that no paths can be routed through a zone centroid. While DTALite cannot use paths through zone centroids, other AMS software tools such as Synchro and PTV VISSIM do not make such distinctions. Executing this command ensures that the resulting network is compatible with Synchro.
2-3. Modify Node properties

Depending on the level of details in TransCAD model, there may be need to modify node properties such as node control type and cycle length. The sample network does not contain node control type, therefore in the test conversion process, the user needs to specify node control type for all the nodes within the subarea.

To check and modify node properties, the user needs to turn on Node layer (by checking the box) the layer manager frame and make it active (by clicking on Node), as shown in Figure 5-11a.

Check node attributes by left clicking on any node. The attributes will display in the lower left frame (Figure 5-11b). To change the attributes of a node, right click on the node, then select View Node Properties for Selected Node in the menu (Figure 5-11c). In the Node Properties windows, users can change Control Type to reflect field practice (Figure 5-11d).

![Figure 5-11 Modify Node Properties in NeXTA](image)
2-4. Re-run DTALite for the Subarea

To ensure a consistent vehicle path assignment within the subarea, dynamic traffic assignment should be run again on the subarea network. This can be done by clicking the Run Simulation button. Simulation settings can be reviewed and users can choose preferred models. After clicking the button, DTALite will run and perform dynamic traffic assignment for the subarea.

2-5. Subarea Calibration (Optional step)

If field data availability (e.g. link volumes) allows, it’s recommended to perform model calibration for the subarea. NeXTA/DTALite features a built-in demand adjustment tool named ODME for model calibration. The objectives of ODME is to better match simulated link volumes to observed field data.

For the Las Vegas network, due to the lack of field data for this project, model calibration was not performed.

Step 3: Export Subarea to Synchro

After dynamic traffic assignment (and ODME process) is done for the subarea, the subarea is ready to be exported to Synchro for further analysis. Since a typical TransCAD model does not contain signal information, NeXTA can approximate signal phasing and timing using HCM’s QEM. This approach was used in this test before exporting the network to Synchro®. The procedure for exporting a subarea network for microscopic analysis is as follows.

3-1. Use QEM to Estimate Initial Signals

An automated QEM spreadsheet is used to generate initial signal phasing and timing for the subarea network. NeXTA writes the geometry and volume information to the spreadsheet, the spreadsheet calculates appropriate phasing and timing data, and then NeXTA reads that phasing and timing data back into its files.

QEM application consists of two files, QEM_Signal_Hub_ver2.xlsm and QEM_v2.xls. They should be both placed in the subarea project folder.

In order to estimate initial signals for the subarea, the user should open file QEM_Signal_Hub_ver2.xlsm, and click on the button as shown in Figure 5-12 to run.
3-2. Export to Universal Traffic Data Format (UTDF) files

NeXTA is capable of writing its network data in UTDF that is compatible with Synchro. When QEM analysis finishes, re-open the subarea file in NeXTA.

Go to menu File – Export – Microscopic Network and Traffic Control Data, and choose “Generate Synchro Universal Traffic Data Format files” (Figure 5-13a), in the next pop-up dialog (Figure 5-13b), click “No” to generate sequential node numbers.
Conversion files will be stored in a folder named Exporting_Synchro_UTDF under the subarea project folder.

3-3. Import UTDF files into Synchro

The import should be carried out using the import tool under Synchro menu *Transfer — Data Access — Version 6 data Access* (Figure 5-14).

![Figure 5-14 Import the Subarea into Synchro](image)

The imported network in Synchro is shown in Figure 5-15.

![Figure 5-15 Illustration of imported network in Synchro](image)
3-4. Additional Adjustments in Synchro

There would be possible manual adjustments needed in Synchro before running simulation in SimTraffic. These adjustments, depending on the specific network, may include but not limited to:

1) Geometry modification, e.g. node-link connection, lane configuration, turning pockets configuration, and side street modification;

2) Turning volumes balancing, and

3) Signal optimization.

These adjustments help the network reflect real traffic conditions as closely as possible, so the resulting simulation would best present traffic performance.
6. Summary and Conclusion

This project proposed a cross-resolution method to convert a macroscopic TransCAD model to a microscopic subarea simulation model in Synchro. The test application demonstrated the integration of TransCAD, DTA, and Synchro as well as the successful application of converting a TransCAD network to DTA, and a subarea from DTA to Synchro.

The positive features during this conversion process include the following:

- Efficient conversion from a TransCAD model to a DTA model: During the conversion, NeXTA automatically converts the entire network and assigns vehicle trips on the network based on the OD matrices from TransCAD. This function was a significant time saver since the conversion only requires a few configuration files prepared with the templates available. Once the DTA model is developed, future subarea analysis and conversion can start from this DTA model to Synchro, which also saves effort from converting TransCAD model again.

- Easy creation and visualization of a subarea: The boundary of a subarea can be defined in NeXTA by drawing boundary polygon in the network display window. Once the boundary is defined, NeXTA automatically extracts the data within the subarea and creates all the necessary files for the subarea to function as an independent network.

- Automatic calibration with ODME: NeXTA/DTALite integrates a built-in ODME tool to match field link volumes to simulated volumes. This tool is capable of providing more accurate vehicle paths for both the entire network and subarea.

- Initial signal estimation function by QEM: NeXTA provides a tool using HCM’s Quick Estimation Method to automatically estimate initial signal phasing and timing for a signalized intersection. It is effort-saving for traffic analysts to start the Synchro simulation.

- Exporting a network from NeXTA to Synchro: NeXTA can successfully convert a network to a Synchro-compatible data format. This link is beneficial to agencies as an effective conversion tool.

- Exporting a network from Synchro to VISSIM: Synchro features a tool to convert its model to VISSIM simulation, which is a beneficial linkage for traffic agencies if need for using VISSIM simulation arises.

Issues and special considerations during the test application of the project are documented as follows:

- Due to the different level of details in macroscopic and microscopic simulation, certain details of road geometry are not available from TransCAD or DTA models. When lane-
related details (such as lane merging, lane widening and turning lanes) are desired to be modeled in micro-simulation, manual efforts are still needed.

- NeXTA/DTALite software package is in ongoing progress of feature developing and improving, which may cause changes to software functions influencing the conversion process or software stability.

- Once the network is converted in Synchro, manual check and adjustment is desired to make sure the simulation can be correctly run in SimTraffic. Adjustments may include node-link connection, turning volumes balancing, and signal optimization.
7. References

13. Zhen (Sean) Qian, and Michael Zhang (2012). On centroid connectors in static traffic assignment: their effects on flow patterns and how to optimize their selections [J]. Transportation Research Part B.